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Practical mechanism design often employes approximations, e.g. if
the true type space is not known. How can we design a mechanism
(in a multidimensional screening problem) which is sophisticated
enough to take this into account?

Model

� One principal and one agent

� Private-values, quasi-linear utility

� Agent has a private type t 2 T � Rm

� t � f 2 �T , with suppffg = T
� T is compact, connected, uncountable and its diameter is
denoted DT = supt;t02T kt� t0k

� True type space is a pair (T; f)

� Y is a compact set of alternatives

� Principal o¤ers a menu, M = f(y0; p0) ; (y00; p00) ; ...g, where
(y; p) 2 Y � R

� Assume there is an outside option in every M , (y0; 0) 2M

� The principal�s pro�t is � (y; p) = p � c (y), where c (y) is the
cost of producing good y

� WLOG, assume that c (y0) = 0
� � is bounded from below by 0

� The agent�s utility is v (t; y; p) = u (t; y)� p

� Assume that for any y, u (�; y) is Lipschitz continuous, i.e. 9K 2
R such that 8y 2 Y and 8t; t0 2 T ,����u (t; y)� u (t0; y)kt� t0k

���� � K
� Need a "smooth" environment to get an approximation

� Assume that

0 � � (y; p) � �max : = sup
y2Y;t2T

u (t; y)� c (y) <1

� Fix the levels of � and u by assuming that �max = 1 andDT = 1

� A¢ ne transformations of payo¤ functions lead to the same
problem, so we can normalize in this way

� A class of normalized problems can be described by the Lip-
schitz constant, K

� A single screening problem can be described by
(T; f; u; c; Y;K)

� Let SK = f(T; f; u; c; Y;K 0) : K 0 � Kg be the class of
problems de�ned by constant K

Stereotype Set

� Principal does not know (or want to use) T and f , the true type
space and distribution of types, but instead has some S � T and
fS 2 �(S) with supp (fs) = S and jSj <1

� (S; fS) is the principal�s approximate type space

� The principal�s expected pro�t given menu M and assuming
(S; fs) is true is:

�(S;M) =
X
t2S

fs (t) (p (y (t))� c (y (t))) ,

where (y (t) ; p (y (t))) 2 M is the item selected by an agent of
type t, i.e. for all t 2 S

u (t; y (t))� p (y (t)) � u (t; y)� p (y) for all (y; p (y)) 2M .

� The principal�s true expected pro�t from menu M is thus
�(T;M)

� In order to take limits we need a measure of the quality of the
model, "true

� Let an approximation partition P be a jSj-partition of T such
that for each As 2 P, there is exactly one s 2 S such that
s 2 As and so that fS (s) = f (As)

� Note that As 2 P need not be connected

� Let � (S; fS) be the set of such partitions and note that
� (S; fS) 6= ;

� For approximation partition P, let

d (P) = sup
As2P

�
sup
t2As

js� tj
�

� The true approximation index of (T; f ;S; fS) is "true =
infP2�(S;fS) d (P)

� Let the best approximation partition be the one that attains
"true

� Principal knows that (S; fS) is approximate and that a true
type space (T; f) exists

� Principal also knows " such that "true � ", for the true type
space

Pro�t-Participation Mechanism

� For any menu M =
�
(y0; p (y0)) ; :::;

�
yk; p

�
yk
��	
,

the the pro�t-participation pricing menu be fM =�
(y0; ep (y0)) ; :::; �yk; ep �yk��	 where

ep (y) = p (y)� � (p (y)� c (y))
such that � =

p
2K"

� Note that in particular

ep (y)� c (y) = (1� �) (p (y)� c (y))
� For any partition of T , eP, let

S
� eP; "� = nS : 8A 2 eP, 9!s 2 S such that s 2 Ao

Lemma (1). Fix T , f , S, fS, K and c : Y ! R, the cost func-
tion. Fix an approximation partition P and associated approxima-
tion index ". For any feasible menu M , let fM be the induced pro�t-
participation pricing menu. For any P 0, a partition at least as �ne
as P, and any S0 2 S (P 0; ") we have:

�
�
S0;fM� � �(S;M)� 2p2k".
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Proof. Fix t 2 S0. Take bt 2 S, such that bt; t 2 A 2 P; hencebt� t � ". Let the menu option chosen by bt 2 S be (by; p (by)) 2M .
Either t 2 S0 chooses good by (case 1) or not (case 2).
If t chooses (by; ep (by)) 2 fM then by de�nition:

ep (by)� c (by) = (1� �) (p (by)� c (by)) .
Agent bt always has the outside option, so that:

p (by)� c (by) � u �bt; by�� c (by) � �max = 1.
Therefore in case 1, the loss is bounded by

ep (by)� c (by)� [p (by)� c (by)] � �p2K". (1)

Consider case 2, where t chooses (y0; ep (y0)) 2 fM where y0 6= by.
Note that since bt chooses by over y0 from M

u
�bt; by�� p (by) � u �bt; y0�� p (y0) .

Since t0 chooses y0 over by from fM :
u (t; by)� ep (by) � u (t; y0)� ep (y0) .

Subtracting the latter from the former yields:

u (t; by)� u (t; y0)� �u �bt; by�� u �bt; y0��
� p (y0)� ep (y0)� (p (by)� ep (by)) (2)

= � (p (y0)� c (y0))� � (p (by)� c (by)) .
To bound inequality 2, note that Lipschitz continuity of u implies:�����u

�bt; by�� u (t; by)bt� t
����� � k,

and since
bt� t � ", we have that ��u �bt; by�� u (t; by)�� � k". Simi-

larly,
��u �bt; y0�� u (t; y0)�� � k", so that

u (t; by)� u (t; y0)� �u �bt; by�� u �bt; y0�� � �2k"
and thus

p (y0)� c (y0)� (p (by)� c (by)) � �2k"
�

.

The loss in case 2 is ep (y0)� c (y0)� [p (by)� c (by)], or
ep (y0)� c (y0)� [p (y0)� c (y0)] + p (y0)� c (y0)� [p (by)� c (by)]

� �� [p (y0)� c (y0)]� 2k"
�
� �� � 2k"

�
.

Choosing � to minimize � + 2k"
� , yields � =

p
2k" and thus

ep (y0)� c (y0)� [p (by)� c (by)] � �2p2k". (3)

Given inequalities 1 and 3, we take expecations to get the desired
result.

Pro�t-Participation Mechanism

� The pro�t-participation mechanism (PPM) is as follows:

1. Given S, fS , Y , u, c, and " �nd the optimal menu M

2. Apply pro�t-participation pricing toM and o¤er resulting
menu fM

� The PPM loss is de�ned as

�(T;M�)��
�
T;fM�

where M� is the optimal menu if the principal knew (T; f)

Theorem (1). The PPM loss is bounded above by 4
p
2k".

Proof. Let M� = argmax
M=f(y(t);p(t))g

�(T;M) subject to

u (t; y (t))� p (t) � u (t; y (t0))� p (t0) for all t; t0 2 T

Let P be the best approximation partition for (T; f ;S; fS) and let

Smax = argmax
S2S(P;")

�(S;M�) .

Note that �(Smax;M�) � �(T;M�). Let M 0 be the pro�t-
participation pricing menu derived from M�. Fix any S 2 S (P; ")
and note that lemma 1 implies:

�(S;M 0) � �(Smax;M�)� 2
p
2k".

Let cM = argmaxM �(S;M) subject to usual IC constraints, so

that �
�
S;cM� � �(S;M 0). Let fM be the pro�t-participation

pricing menu derived from cM ; using lemma 1 again we have that
�
�
T;fM� � �

�
S;cM� � 2p2k". Putting the above together gives

the desired result:

�
�
T;fM� � �

�
S;cM�� 2p2k" � �(S;M 0)� 2

p
2k"

� �(Smax;M
�)� 4

p
2k" � �(T;M�)� 4

p
2k".

Alternative Mechanisms

� No-Free-Lunch theorem

� A mechanism is model-based if it can be represented as a two-
step process where the price found in step 1 of PPM is modi�ed
by some function so that the modi�ed prices are

ep (y) = 	 (p (y) ; c (y) ; k; ")
� A model-based mechanism violates pro�t participation if for
some "true > 0, there exists p > 0 and c > 0 such that for all
p0 < p00 � p and c � c

p00 �	(p00; c; k; ") � p0 �	(p0; c; k; ")

� PPM is model-based and does not violate pro�t participation

Theorem (2). For any k > 0, the upper bound to the pro�t loss gen-
erated by a model-based mechanism that violates pro�t participation
does not vanish as "! 0.

� If a mechanism is to achieve e¢ cient pro�t in the limit, then
either it is similar to PPM or very di¤erent

� Intuition is that non-pro�t-participation model-based mecha-
nisms have many binding constraints

� Better to add slack to constraints so that agents choose alter-
natives which generate a higher pro�t

Proof. Consider a model-based mechanism given by 	 that vio-
lates pro�t participation for p > 0 and c > 0. Let p0 = 1

2p,
p00 2

�
1
2p;min

�
1
2p+

1
6k; p

	�
and c = 0, so that:

p00 �	(p00; 0; k; ") � p0 �	(p0; 0; k; ") .
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Consider a screening problem as follows: T = [0; 2], f (t) = 1
2 for all

t 2 T , Y = [1; 2] [ fy; y0g and

u (t; y) =

8<: p0 + q (t� 1� 2 jy � tj) if y 2 [1; 2]
p0 if y = y
0 if y = y0

,

where p00 � p0 = q.
Optimal for types t � 1 to buy y at price p0; for types t > 1 to getby (t) = t at price p0 + q(t� 1). Principal�s expected pro�t is p0 + 1

4q.
This problem satis�es the k-Lipschitz condition since:

max
(t;y)

����@u (t; y)@t

���� � 3q = 3p00 � 3p0 < 1

2
k.

Now, take the following sequence of approximate type spaces:

Sn =

�
j

2n
: j 2 N, j � 2n+1

�
,

fSn (0) = fSn (2) =
1

2n+2
, and fSn (s) =

1

2n+1
for other s.

Note that "ntrue =
1
2
1
2n = 2

�n�1 and so we can set "n = 2�n�1. Fix
n and write 	(�; �) = 	 (�; �;K; "n). Note that since p (y) = p0 and
p (by (s)) = p0+q (s� 1), we have that the mechanism 	 gives prices:

ep (y) = 	 (p0; 0) and ep (y) = 	 (p0 + q (s� 1) ; 0) .
Since 	 violates pro�t participation, for t 2 [1; 2]:

p0 + q (s� 1)�	(p0 + q (s� 1) ; 0) � p0 �	(p0; 0) . (4)

Thus, any t 2 [1; 2]r Sn gets utility:

p0 + q (t� 1� 2 js� tj)�	(p0 + q (s� 1) ; 0) if t gets by (s)
p0 �	(p0; 0) if t gets y

.

Hence t 2 [1; 2] r Sn would choose by (s) if q (t� 1� 2 js� tj) �
	(p0 + q (s� 1) ; 0) � �	(p0; 0). Together with equation 4 this im-
plies:

q (t� 1� 2 js� tj)� q (s� 1) � 0, or

t� s � 2 js� tj ,

which is a contradiction.
Therefore a measure 1 of agents chooses y instead of a personalized

alternative. Hence the principal�s pro�t for any Sn is p0. Note that
as n ! 1 and "n = 1

2n+1 ! 0, but the principals pro�t converges
to p0 < p0 + q

2 .

Comments on Proofs

� The proof of Lemma 1 contains an incorrect claim in the second
paragraph (although the validity of the lemma remains intact)

� The argument for why the required bt 2 S exists and whyt� bt � " needs to be revisited
� The claim in the second paragraph, that S0 � S, is false in
general, since jS0j > jSj unless P 0 = P

� Furthermore, if the statement was amended to read S � S0,
there would still be a counterexample

Example. Take P to be a regular square grid where the indi-
vidual squares have length l and take " = 1

2 l. In this case we have
that S (P; ") is a singleton and in particular S (P; ") = fSg where S
is the set of all types which are at the centre of each square. Let P 0

be a partition �ner than this (see diagram). Note that S (P 0; ") is
not a singleton and that one can easily �nd an S0 2 S (P 0; "), such
that S � S0.

Figure 1: The square grid P and S, the set of red dots is shown on
the left. The right pane shows P 0, a partition �ner than P, and S0,
the set of red dots. Note that S 6� S0.

� One could correctly make the claim that for any S 2 S (P; ")
there exists a S0 2 S (P 0; ") such that S � S0, but this is not
helpful for the proposition

� That one can �nd a bt 2 S such that t� bt � " follows since for
any t 2 T , there exists some A 2 P, such that t 2 A. Further
there exists some bt 2 S such that bt 2 A and since

" � "true = inf
P2�(S;fS)

�
sup
As2P

�
sup
t2As

js� tj
��

,

it follows that
t� bt � "

Remark (Dec 2012). It appears that the proof of the lemma has
been corrected in the latest version of the paper.
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